On the computation of invariant measures in random dynamical systems
نویسندگان
چکیده
Invariant measures of dynamical systems generated e. g. by difference equations can be computed by discretizing the originally continuum state space, and replacing the action of the generator by the transition mechanism of a Markov chain. In fact they are approximated by stationary vectors of these Markov chains. Here we extend this well known approximation result and the underlying algorithm to the setting of random dynamical systems, i.e. dynamical systems on the skew product of a probability space carrying the underlying stationary stochasticity and the state space, a particular non-autonomous framework. The systems are generated by difference equations driven by stationary random processes modelled on a metric dynamical system. The approximation algorithm involves spatial discretizations and the definition of appropriate random Markov chains with stationary vectors converging to the random invariant measure of the system. 2000 AMS subject classifications: 60 G, 60 H 25, 60 J 10, 65 C 30, 65 Q 05, 37 H 10, 37 M 25.
منابع مشابه
Entropy of infinite systems and transformations
The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...
متن کاملThe concept of logic entropy on D-posets
In this paper, a new invariant called {it logic entropy} for dynamical systems on a D-poset is introduced. Also, the {it conditional logical entropy} is defined and then some of its properties are studied. The invariance of the {it logic entropy} of a system under isomorphism is proved. At the end, the notion of an $ m $-generator of a dynamical system is introduced and a version of the Kolm...
متن کاملMinimal attractors and bifurcations of random dynamical systems
We consider attractors for certain types of random dynamical systems. These are skew-product systems whose base transformations preserve an ergodic invariant measure. We discuss definitions of invariant sets, attractors and invariant measures for deterministic and random dynamical systems. Under assumptions that include, for example, iterated function systems, but that exclude stochastic differ...
متن کاملRegularity of Invariant Densities for 1d-systems with Random Switching
This is a detailed analysis of invariant measures for one-dimensional dynamical systems with random switching. In particular, we prove smoothness of the invariant densities away from critical points and describe the asymptotics of the invariant densities at critical points.
متن کاملChaos Monte Carlo computation: a dynamical effect of random-number generations
Ergodic dynamical systems with absolutely continuous invariant probability measures are implemented as random-number generators for Monte Carlo computation. Such chaos-based Monte Carlo computation yields sometimes unexpected dynamical dependency behavior which cannot be explained by the usual statistical argument. We resolve the problem of its origin of this behavior by considering the effect ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003